Continuous Projective Measurements - A

Non-Hermitian Description

Varun Dubey!, Cédric Bernardin, Abhishek Dhar!

IStatistical Physics Group, ICTS(TIFR), Bengaluru 560089.
’Université Cote d’Azur, CNRS, LJAD Parc Valrose, 06108 NICE Cedex 02, France.

varun.dubey@icts.res.1in,

abhishek.dhar@icts.res.in

Cedric.Bernardin@unice. fr,

1. Abstract

The problem of the time of arrival of a quantum system in a
specified state is considered in the framework of the repeated
measurement protocol and in particular the limit of continuous
measurements is studied. It is shown that for a particular choice
of system-detector coupling, the Zeno effect is avoided and the
system can be described effectively by a non-Hermitian effective
Hamiltonian. As a specific example we consider the evolution
of a quantum particle on a one-dimensional lattice that is sub-
jected to position measurements at a specific site. By solving the
corresponding non-Hermitian wave function evolution equation,
we present analytic closed-form results on the survival probability
and the first arrival time distribution. Finally we discuss the limit of
vanishing lattice spacing and show that this leads to a continuum
description where the particle evolves via the free Schrédinger
equation with complex Robin boundary conditions at the detec-
tor site. Several interesting physical results for this dynamics are
presented.

2. Background
The full Hilbert Space

H=_S_ & D_ .
System  Detector

[=Q+P

() is projection operator on S and P is the orthogo-
nal projection on D. Let the system start in the S and
evolve unitarily. At regular intervals of time 7, measure
to detect if the system has arrived in D. For a negative
measurement, the system (now projected back into S)
continues its unitary evolution, until the next measure-
ment and the process is repeated. The experiment
stops when we get a positive result indicating arrival
into D. The state of the system conditioned on survival
(non-detection) after the n-th measurement be denote
by [¢)(n7)) . Then it can be shown [2]

The survival probability after n measurements
S(nt) = ((nT)[Y(nT)) .

We take the Hamiltonian to be
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where {|i)} span S and {|a)} span D. In 7 — 0 limit,
the conditioned state | (¢)) evolves according to []

9 [y(t))
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The quantites of interest are the Survival probability
S(t) and the First Arrival time distribution F'(¢) given by
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S(t) = (@)p(t)), F(t)=
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3. Simple 1-d Hamiltonians

We consider 1—d lattices with detector at site
0.Introduce the dimensionless parameter « (strength
of the detection). The local potential is 2+, except on
the site 1 where it is equal to (8 + 2)y. Hence S is
a dimensionless parameter measuring the strength of
the potential near the detector. These parameters are
capsulated in the complex number w = o + /3.

3.1 Finite lattice A = {0,..., N} of size
N > 2

Taking the Hamiltonian to be
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The survival probability S(¢) (via numerical simula-
tion) is plotted for lattice sizes N = 100 and N = 200.
In both cases v;(0) = d; 99, w = 2. The dashed line is
the value S, obtained from analytical expression in
semi-infinite case (See below).

3.2 Semi-infinte Lattice Ay
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The Schrodinger equation corresponding to the
above Hamiltonian is

5’% _ (2 _ 2w>¢1 — ¢2, n = 17
ot 2¢n T ¢n—1 — wn—kla n > 2.
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The analytical form of Sy(w, ny), where ny is the ini-
tial position of the particle is shown in [1] to be

SNZI_%(w)/idQ cos 0
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4. Continuum Limit of Lattice Ay

It is shown in [1] that the continuum Ilimit of the
Schrddinger Equation is
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For an initial state Vy(x), the general solution can
be written in terms of the scattering and bound
states of the non-Hermitian differential operator in the
Schrodinger Equation above. Further
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The above graph shows the variation of first passage
time distribution F(¢) for the Vy(z) =1, forl <z < 2
and 0 elsewhere and ¢ = 0.2 — 0.5.

5. Results

« Formulating the problem for general quantum sys-
tems with a discrete Hilbert space, we rigorously
showed the equivalence between the repeated
measurement protocol and the non-Hermitian de-
scription.

« For a quantum particle on a 1D lattice with a de-
tector at one site we then solved the corresponding
Schrddinger equation with a complex potential.

« We studied the limit of lattice spacing going to 0 to
obtain a formulation for the continuum case.

References

[1] Dubey V., Bernardin C., Dhar A., Quantum Dynamics un-
der continuous projective measurements: non-Hermitian de-
scription and the continuous space limit, arXiv 2012.01196,
2020.

[2] Dhar,S. and Dasgupta,S. and Dhar,A. and Sen,D., Detection
of a quantum particle on a lattice under repeated projective
measurements, PhysRevA.91.062115, 2015.

[3] Krapivsky, P. L. and Luck, J. M. and Mallick, K., Survival of
classical and quantum particles in the presence of traps, J.
Stat. Phys. 154, 2014.

2R (w) /1 w1 — W)+ P u?)
0 (14wl u2)? = (23(w) vy




