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1. Abstract
The problem of the time of arrival of a quantum system in a
specified state is considered in the framework of the repeated
measurement protocol and in particular the limit of continuous
measurements is studied. It is shown that for a particular choice
of system-detector coupling, the Zeno effect is avoided and the
system can be described effectively by a non-Hermitian effective
Hamiltonian. As a specific example we consider the evolution
of a quantum particle on a one-dimensional lattice that is sub-
jected to position measurements at a specific site. By solving the
corresponding non-Hermitian wave function evolution equation,
we present analytic closed-form results on the survival probability
and the first arrival time distribution. Finally we discuss the limit of
vanishing lattice spacing and show that this leads to a continuum
description where the particle evolves via the free Schrödinger
equation with complex Robin boundary conditions at the detec-
tor site. Several interesting physical results for this dynamics are
presented.

2. Background
The full Hilbert Space

H = S︸︷︷︸
System

⊕ D︸︷︷︸
Detector

.

I = Q + P.

Q is projection operator on S and P is the orthogo-
nal projection on D. Let the system start in the S and
evolve unitarily. At regular intervals of time τ , measure
to detect if the system has arrived in D. For a negative
measurement, the system (now projected back into S)
continues its unitary evolution, until the next measure-
ment and the process is repeated. The experiment
stops when we get a positive result indicating arrival
intoD. The state of the system conditioned on survival
(non-detection) after the n-th measurement be denote
by |ψ(nτ )〉 . Then it can be shown [2]

|ψ(nτ )〉 = Ũn
τ |ψ(0)〉 , Ũτ = QUτQ.

The survival probability after n measurements

S(nτ ) = 〈ψ(nτ )|ψ(nτ )〉 .

We take the Hamiltonian to be

H =
∑
i,j

γij |i〉 〈j|︸ ︷︷ ︸
HS

+
∑
α,β

γαβ |α〉 〈β|︸ ︷︷ ︸
HD

+

∑
i,α

[√
γiα
τ
|i〉 〈α| +

√
γαi
τ
|α〉 〈i|

]
︸ ︷︷ ︸

HSD

where {|i〉} span S and {|α〉} span D. In τ → 0 limit,
the conditioned state |ψ(t)〉 evolves according to []

ı
∂ |ψ(t)〉
∂t

= Heff |ψ(t)〉 , Heff = HS − ıV S

where
V Sij =

1

2

∑
α

√
γiαγαj.

The quantites of interest are the Survival probability
S(t) and the First Arrival time distribution F (t) given by

S(t) = 〈ψ(t)|ψ(t)〉 , F (t) = −dS
dt

= 2 〈ψ(t)|V S |ψ(t)〉 .

3. Simple 1-d Hamiltonians
We consider 1−d lattices with detector at site
0.Introduce the dimensionless parameter α (strength
of the detection). The local potential is 2γ0 except on
the site 1 where it is equal to (β + 2)γ0. Hence β is
a dimensionless parameter measuring the strength of
the potential near the detector. These parameters are
capsulated in the complex number w = α + ıβ.

3.1 Finite lattice Λ = {0, . . . , N} of size
N ≥ 2

Taking the Hamiltonian to be

H = −γ0

N∑
n=2

[
|n〉 〈n− 1| + |n− 1〉 〈n| − 2 |n〉 〈n|

]
+

(2 + β)γ0 |1〉 〈1| −
√

2αγ0

τ
( |0〉 〈1| + |1〉 〈0| )

the scaled effective Hamiltonian HΛ =
Heff

γ0
is

HΛN = −
N∑
n=2

[
|n〉 〈n− 1| + |n− 1〉 〈n| − 2 |n〉 〈n|

]
+

(2− ıw) |1〉 〈1| .
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The survival probability S(t) (via numerical simula-
tion) is plotted for lattice sizes N = 100 and N = 200.
In both cases ψi(0) = δi,20, w = 2. The dashed line is
the value S∞ obtained from analytical expression in
semi-infinite case (See below).

3.2 Semi-infinte Lattice ΛN

HN = −
∞∑
n=2

[
|n〉 〈n− 1| + |n− 1〉 〈n| − 2 |n〉 〈n|

]
+

(2− ıw) |1〉 〈1| .

The Schrödinger equation corresponding to the
above Hamiltonian is

ı
∂ψn
∂t

=

{
(2− ıw)ψ1 − ψ2, n = 1,

2ψn − ψn−1 − ψn+1, n ≥ 2.

The analytical form of SN(w, n0), where n0 is the ini-
tial position of the particle is shown in [1] to be

SN = 1− <(w)

π |w|

∫ π
2

−π2

dθ
cos θ

1
2

(
|w| + 1

|w|

)
+ cos (θ − ϕ)

− 2<(w)

π

∫ 1

0

du
u2n0−2(1− u2)(1 + |w|2 u2)

(1 + |w|2 u2)2 − (2=(w)u)2
.

4. Continuum Limit of Lattice ΛN

It is shown in [1] that the continuum limit of the
Schrödinger Equation is

ı
∂Ψ

∂t
= −∂

2Ψ

∂x2
, with Robin b.c.

[
Ψ + ζ ∂Ψ

∂x

]
x=0

= 0,

with
ζ = lim

ε→0
ε

ıw

ıw − 1
.

For an initial state Ψ0(x), the general solution can
be written in terms of the scattering and bound
states of the non-Hermitian differential operator in the
Schrödinger Equation above. Further

lim
t→∞

t3F (t) = −=(ζ)

2π
|mΨ0|

2

where
mΨ0 =

∫ ∞
0

dx (x− ζ)Ψ0(x).
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The above graph shows the variation of first passage
time distribution F (t) for the Ψ0(x) = 1, for 1 < x < 2
and 0 elsewhere and ζ = 0.2− 0.5ı.

5. Results

• Formulating the problem for general quantum sys-
tems with a discrete Hilbert space, we rigorously
showed the equivalence between the repeated
measurement protocol and the non-Hermitian de-
scription.

• For a quantum particle on a 1D lattice with a de-
tector at one site we then solved the corresponding
Schrödinger equation with a complex potential.

• We studied the limit of lattice spacing going to 0 to
obtain a formulation for the continuum case.

References

[1] Dubey V., Bernardin C., Dhar A., Quantum Dynamics un-
der continuous projective measurements: non-Hermitian de-
scription and the continuous space limit, arXiv 2012.01196,
2020.

[2] Dhar,S. and Dasgupta,S. and Dhar,A. and Sen,D., Detection
of a quantum particle on a lattice under repeated projective
measurements, PhysRevA.91.062115, 2015.

[3] Krapivsky, P. L. and Luck, J. M. and Mallick, K., Survival of
classical and quantum particles in the presence of traps, J.
Stat. Phys. 154, 2014.

NHP 2021


